Semantic Kernels for Semantic Parsing

نویسندگان

  • Iman Saleh
  • Alessandro Moschitti
  • Preslav Nakov
  • Lluís Màrquez i Villodre
  • Shafiq R. Joty
چکیده

We present an empirical study on the use of semantic information for Concept Segmentation and Labeling (CSL), which is an important step for semantic parsing. We represent the alternative analyses output by a state-of-the-art CSL parser with tree structures, which we rerank with a classifier trained on two types of semantic tree kernels: one processing structures built with words, concepts and Brown clusters, and another one using semantic similarity among the words composing the structure. The results on a corpus from the restaurant domain show that our semantic kernels exploiting similarity measures outperform state-of-the-art rerankers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Syntactic Kernels for Natural Language Learning: the Semantic Role Labeling Case

In this paper, we use tree kernels to exploit deep syntactic parsing information for natural language applications. We study the properties of different kernels and we provide algorithms for their computation in linear average time. The experiments with SVMs on the task of predicate argument classification provide empirical data that validates our methods.

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees

In this paper, we provide a study on the use of tree kernels to encode syntactic parsing information in natural language learning. In particular, we propose a new convolution kernel, namely the Partial Tree (PT) kernel, to fully exploit dependency trees. We also propose an efficient algorithm for its computation which is futhermore sped-up by applying the selection of tree nodes with non-null k...

متن کامل

Shallow Semantic Parsing Based on FrameNet, VerbNet and PropBank

This article describes a semantic parser based on FrameNet semantic roles that uses a broad knowledge base created by interconnecting three major resources: FrameNet, VerbNet and PropBank. We link the above resources through a mapping between Intersective Levin classes, which are part of PropBank’s annotation, and the FrameNet frames. By using Levin classes, we successfully detect FrameNet sema...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014